Two-fluid Mhd Simulations of Converging Hi Flows in the Interstellar Medium. I: Methodology and Basic Results

نویسنده

  • Tsuyoshi Inoue
چکیده

We develop an unconditionally stable numerical method for solving the coupling between two fluids (frictional forces/heatings, ionization, and recombination), and investigate the dynamical condensation process of thermally unstable gas that is provided by the shock waves in a weakly ionized and magnetized interstellar medium by using two-dimensional two-fluid magnetohydrodynamical simulations. If we neglect the effect of magnetic field, it is known that condensation driven by thermal instability can generate high density clouds whose physical condition corresponds to molecular clouds (precursor of molecular clouds). In this paper, we study the effect of magnetic field on the evolution of supersonic converging HI flows and focus on the case in which the orientation of magnetic field to converging flows is orthogonal. We show that the magnetic pressure gradient parallel to the flows prevents the formation of high density and high column density clouds, but instead generates fragmented, filamentary HI clouds. With this restricted geometry, magnetic field drastically diminishes the opportunity of fast molecular cloud formation directly from the warm neutral medium, in contrast to the case without magnetic field.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two-fluid Mhd Simulations of Converging Hi Flows in the Interstellar Medium. Ii: Are Molecular Clouds Generated Directly from Warm Neutral Medium?

Formation of interstellar clouds as a consequence of thermal instability is studied using twodimensional two-fluid magnetohydrodynamic simulations. We consider the situation of converging, supersonic flows of warm neutral medium in the interstellar medium that generate a shocked slab of thermally unstable gas in which clouds form. We found, as speculated in paper I, that in the shocked slab mag...

متن کامل

Heat Transfer Analysis of Nanofluid Flow with Porous Medium through Jeffery Hamel Diverging/Converging Channel

In this paper, flow and heat transfer of nanofluid through a converging or diverging channel with porous medium is investigated. The fluid constantly flows under the effect of magnetic field through the channel. The diverging/converging fluid motion is modeled using the momentum and energy equations. The influence of some parameters such as opening channel angle, Reynolds number and Darcy’s num...

متن کامل

MHD Flow and Heat Transfer Analysis of Micropolar Fluid through a Porous Medium between Two Stretchable Disks Using Quasi-Linearization Method

In this paper, a comprehensive numerical study is presented for studying the MHD flow and heat transfer characteristics of non-Newtonian micropolar fluid through a porous medium between two stretchable porous disks. The system of governing equations is converted into coupled nonlinear ordinary ones through a similarity transformation, which is then solved using Quasi-linearization ...

متن کامل

Perturbation Solutions for the Study of MHD Blood as a Third Grade Nanofluid Transporting Gold Nanoparticles through a Porous Channel

In this paper, the flow, thermal and concentration analyses of blood as a third grade with gold as nanoparticles through a porous channel are carried out using regular perturbation method. The analysis are carried out using Vogel’s model of temperature-dependent viscosity. The developed models were used to investigate the effects of the nano particles on the concentration, temperature and veloc...

متن کامل

Turbulence in nearly incompressible fluids: density spectrum, flows, correlations and implication to the interstellar medium

Interstellar scintillation and angular radio wave broadening measurements show that interstellar and solar wind (electron) density fluctuations exhibit a Kolmogorovlike k−5/3 power spectrum extending over many decades in wavenumber space. The ubiquity of the Kolmogorov-like interstellar medium (ISM) density spectrum led to an explanation based on coupling incompressible magnetohydrodynamic (MHD...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008